What is fraud detection?

- Identifying wrongful acts performed by the wrong people

Possible solution to detect fraud

- Decision tree and rules
 - Build a profile of the characteristics of fraudulent behavior
 - Pull out cases that meet those characteristics
- Clustering and identifying outliers
 - Group behavior using clustering algorithms
 - Find outliers and then investigate
- False positives

What is an outlier?

- An outlier is an observation that deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.
- Simple example: Stolen credit card
 - Card owner is concerned with implications of purchases and thief is not
 - Both have different likes/dislikes, shopping habits, and locations

Algorithm NL

- Complexity of $O(kN^2)$
- Algorithm tries to define a DB (Distance Based) outlier as: an object O in a data-set T is a DB(p,D) outlier if at least fraction p of the objects in T lies greater than distance D from O.

Definition 1

DB(p,D) unifies1 or generalizes another definition Def for outliers, if there exist specific values p_0, D_0 such that: object O is an outlier according to Def iff O is a DB($p_0; D_0$) outlier.

Definition 2

Let T be a normally distributed random variable with mean μ and standard deviation σ. Def$_{\text{Normal}}$ as follows: $t \in T$ is an outlier iff $(t - \mu) / \sigma \geq 3$ or $(t - \mu) / \sigma \leq -3$.

For a normal distribution, outliers can be considered to be points that lie three or more standard deviations from the mean.
Pseudo-code

1. Fill the first array with a block of tuples from T.

2. For each tuple t_i in the first array, do:
 a. $count_i \leftarrow 0$
 b. For each tuple t_j in the first array, if $\text{dist}(t_i, t_j) \leq D$ do:
 Increment $count_i$ by 1. If $count_i > M$, mark t_i as a non-outlier and proceed to next t_i.

3. While blocks remain to be compared to the first array, do:
 a. Fill the second array with another block.
 b. For each unmarked tuple t_i in the first array do:
 For each tuple t_j in the second array, if $\text{dist}(t_i, t_j) \leq D$ do:
 Increment $count_i$ by 1. If $count_i > M$ do:
 mark t_i as a non-outlier and proceed to next t_i.

4. For each unmarked tuple t_i in the first array, report t_i as an outlier.

5. If the second array has served as the first array anytime before, stop; otherwise, swap the names of the first and second arrays and go-to step 2.

Improvements

Fill the arrays with the blocks in the following order and comparing:

<table>
<thead>
<tr>
<th>Block Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,A</td>
</tr>
<tr>
<td>A,B</td>
</tr>
<tr>
<td>A,C</td>
</tr>
<tr>
<td>A,D</td>
</tr>
</tbody>
</table>

| 4 block reads | 2 block reads | 2 block reads | 2 block reads |

Total block reads: 10

Number of passes over the entire data set: $10/4 = 2.5$

References