Expected Results (Deliverables)

The results of a project that seeks to reduce error in an ocean model are the amount of error reduced in those models. $J(x)$, the cost function we are seeking to reduce, is a function of many variables. We are able to control a single variable in that cost function, x_{obs} (a vector that contains observed values, including salinity, temperature, current velocities, etc.)

Equation:

$$J(x) = (x - x_{obs})^T \cdot O^{-1} \cdot (x - x_{obs}) + (x - x_b)^T \cdot B^{-1} \cdot (x - x_b)$$

Hypothesis

The hypothesis for this work is less of a question than a statement: Determine the method (algorithm) that best reduces the cost function, $J(x)$, in a given amount of time (i.e., we can only obtain a certain number of x_{obs}).

Independent and dependent variables

Of the variables in $J(x)$ above, we can collect and observe x_{obs}. The O and B represent covariance matrices – essentially a multiplier or weight of either the observed or the background data, respectively. The variable x_b is background data – preexisting data that goes into the first iteration of an ocean model simulation.

Measures

I plan to measure the results of my experiments by comparing the total amount of error reduced in each simulation by grabbing x_{obs} in different places. Because we cannot grab every x in a simulation (a simulation consists of thousands of potential data points, each with a certain amount of error), we have to create a path that collects the x_{obs} in the most efficient manner and in a manner that produces the best results.

Experiment Protocol

Because the initial data (x_b) for the experiment is available, I plan on conducting the experiment by writing a Java program that searches for the best path to reduce error. This can be executed by using offline search methods (depth and breadth first), and online search methods (best first, A^*), and examining the paths that produce the best results.