Expected Results (Deliverables)
The results of a project that seeks to reduce error in an ocean model are the amount of error reduced in those models. \(J(x) \), the cost function we are seeking to reduce, is a function of many variables. We are able to control a single variable in that cost function, \(x_{\text{obs}} \) (a vector that contains observed values, including salinity, temperature, current velocities, etc.)

Equation:

\[
J(x) = (x - x_{\text{obs}})^T \cdot O^{-1} \cdot (x - x_{\text{obs}}) + (x - x_b)^T \cdot B^{-1} \cdot (x - x_b)
\]

Hypothesis
The hypothesis for this work is less of a question than a statement: Determine the method (algorithm) that best reduces the cost function, \(J(x) \), in a given amount of time (i.e., we can only obtain a certain number of \(x_{\text{obs}} \)).

Independent and dependent variables
Of the variables in \(J(x) \) above, we can collect and observe \(x_{\text{obs}} \). The \(O \) and \(B \) represent covariance matrices – essentially a multiplier or weight of either the observed or the background data, respectively. The variable \(x_b \) is background data – preexisting data that goes into the first iteration of an ocean model simulation.

Measures
I plan to measure the results of my experiments by comparing the total amount of error reduced in each simulation by grabbing \(x_{\text{obs}} \) in different places. Because we cannot grab every \(x \) in a simulation (a simulation consists of thousands of potential data points, each with a certain amount of error), we have to create a path that collects the \(x_{\text{obs}} \) in the most efficient manner and in a manner that produces the best results.

Experiment Protocol
Because the initial data (\(x_b \)) for the experiment is available, I plan on conducting the experiment by writing a Java program that searches for the best path to reduce error. This can be executed by using offline search methods (depth and breadth first), and online search methods (best first, A*), and examining the paths that produce the best results.